
i

Sustainable Dev Environments with
Docker and Bash

Build a Stable and Maintainable Place to Code

David Bryant Copeland

This sample is copyright ©2024 by David Bryant Copeland, All Rights Reserved.

For more information, visit https://devbox.computer

Contents

Contents

1 Your Dev Environment Sucks 3

2 The Four Types of Dev Environments 7
2.1 The Best Documentation is an Executable Script 8
2.2 Our Computers are Increasingly Not Under Our Control 8
2.3 Automation and Virtualization Lead to Sustainability 9
2.4 You Must Always Understand One Level Below the Current Abstraction 9

A The Docker Lexicon for Regular People 13

B Bash and Command-Line Quick Reference 15
B.1 Concepts . 15
B.2 Symbol Soup . 16

Preface

Over the last four or five years, I’ve written several tech books, worked at a startup,
and pursued many personal projects. Docker has allowed me to focus on the
work and not on getting software re-installed for the 80th time just because Apple
changed something.

I’ve refined how to use Docker for development, applying the same general princi-
ples to Ruby on Rails, NodeJS, CSS, and writing technical books. The consistency
it brings, along with the value created by carefully writing the Bash scripts needed
to glue it all together, has allowed me to focus, multi-task, and get things done.

A great example is this book itself. The toolchain1 I use to write books requires
a lot of tools, including some weird ones, like Graphviz, LaTeX, pandoc, Ruby,
NodeJS, and Mermaid. Getting them installed on my Mac is difficult, so I put them
all into Docker. I took a three month break from working on this book and got a
new computer in that time. The first time I started up the book’s development
environment on my new computer—which only had Docker installed—everything
just worked.

Another part of it is that I took the time to write decent Bash scripts to automate
aspects of Docker. Docker was clearly not designed for an everyday developer to
be typing its commands, but this is what Bash is for!

Docker and Bash aren’t the most beloved or easy-to-use tools, and I will be pointing
out their various issues in usability and intuitiveness as we go. But they are
ubiquitous and, despite some rough edges, they both work, and work reliably.

Acknowledgments

I’d like to thank the Docker team, since they made a useful tool and created a
great ecosystem. I will be throwing a lot of shade their way in this book, but it just
means that Docker is worth criticizing. I’m glad that Docker is something I can
complain about, instead of something no one has ever heard of.

I’d also like to thank whoever has worked on Bash over the years, particular who-
ever has continually made it backward compatible. When I find a Bash answer on
Stack Overflow, it always works. ChatGPT is even right more than half the time!

I’d also like to thank the many tech reviewers who gave me great feedback on
early versions of this book: Jason Garber, Reid Gillette, Sam Livingston-Gray, and
Bradley Schaefer.

1https://www.naildrivin5.com/blog/2023/02/03/toolchain-for-building-programming-
books.html

1

https://www.naildrivin5.com/blog/2023/02/03/toolchain-for-building-programming-books.html
https://www.naildrivin5.com/blog/2023/02/03/toolchain-for-building-programming-books.html

1

Your Dev Environment Sucks

MacOS Bakersfield is our best version of macOS, yet.
We’ve replaced the long-deprecated version of Ruby with
nothing. You’ll have to build Ruby yourselves, and you’ll
get to use our exciting new compiler flags that we haven’t
bothered to document. We’ve also managed to make sure
that Homebrew now requires your iTunes password with
every install. Only Apple has the courage to make this
update to your computer without your consent.
Oh, and one more thing: Your wiki is out of date.

—Craig Federighi

They say people don’t quit their jobs—they quit their managers. I think developers
often quit their dev environments. The hodgepodge of tools, libraries, scripts, and
documentation required to actually build software is pretty important. So why
does it seem to be broken all the time? In my almost 30 years writing professional
software, I have not experienced a truly awesome dev environment. I bet you
haven’t, either. We’re going to change that.

Dev environments suck because of a perfect storm of factors. Once you set one up,
you rarely set it up again, so any instructions on how to do it are instantly obsolete.
Hardware and software across even a small dev team is wildly inconsistent.

Operating system vendors and security teams force updates that break transitive
dependencies. Any automation has to work in a degenerate environment where
no other software has been installed, which makes it hard to write and change.

On top of all this, usually no one owns the dev environment. Each team typically
has at most two experts: the developer that set it up initially and whoever was the
most recent new hire.1

It doesn’t have to be this way. We aren’t woodworkers whose working environment
is a physical space occupied by heavy machinery that can’t be moved or replaced.
A dev environment is a software system. We know this.

1And let’s be honest, everyone else on the team is in a race to see if they can get promoted to
management or hired at a competitor before IT refreshes their computer and they have to rebuild
everything.

3

What You’ll Learn

This book is going to show a way forward using Docker and Bash. That’s
right. . . Bash. But this isn’t a blog post where I tell you what incantations to paste.
You’re going to learn how Docker works. You’ll set up a dev environment by first
running painfully verbose counter-intuitive Docker commands. This is how
you’ll learn what’s going on. Then, you’ll make it all better with well-written and
nicely-crafted Bash scripts.

With just Docker and Bash you can automate just about any dev environment you
can imagine2.

Here is how this is going to go: We need a bit of theory to ground us in the problem
we’re solving and why the solution this book presents is the best, all things being
equal. We’ll learn what a dev environment is, and why the best implementation is
automation of a virtualized environment. Our theory will end with an overview of
Docker’s terminology and behavior. You’ll want to bookmark that chapter.

We’ll then use Docker and Docker Compose to make a generalized dev environ-
ment for an example app. In addition to seeing Docker in action, we’ll learn the
right way to choose base images for use and the right way to install software in the
images you will build. It’s marginally more difficult than using Stack Overflow, but
will produce far superior-and sustainable—results.

After that, we’ll wrap up all those Docker commands with some general-purpose
Bash scripts. But these will be no ordinary Bash scripts. They will provide help on
the command line. They will be easy to use. They will even use some features of
good software design so that someone other than the author can make sense of
them.

What You Need

To use the tools we’ll cover, you need a computer capable of running Docker. That
means any recent Linux box, Apple computer, or a Windows-based PC that has
Windows Subsystem for Linux 2 (WSL1). All of these platforms will contain Bash.

For completeness, I’m running Docker Desktop 4.20.1 and GNU Bash 5.1.4. Any-
thing close to these versions will be fine.

2Except iPhone apps. For those you are stuck with Xcode, the App Store, and a 27% markup on
an untestable payment processing experience you must maintain on behalf of customers you cannot
contact. I’m very sorry if this is your life, and I hope your app is a hit.

4

A Note on Windows

If you are using a Windows PC, you really should use WSL2, which is free and
easy to install. Like. . . so easy I couldn’t believe it. Once you do that, and then install
Docker, you must follow the post-install instructionsa on Docker’s website.

Your WSL setup will have you running Linux as a normal, non-root user, and by
default, that type of user can’t use Docker. The instructions at the link work - I did
this using a Windows PC having not touched Windows at all in probably 10 years.

For the most part, everything works on Windows the same was as it does on Mac
or Linux. On the few occasions where something is off, I’ve noted it, but generally
what WSL2 buys you is compatibility with the rest of the computing landscape.

ahttps://docs.docker.com/engine/install/linux-postinstall/

You also don’t need to be the most experienced developer. Some experience
writing code in any language will be sufficient. The Docker stuff isn’t really code.
If you’ve never done Bash before, don’t worry, that will all be explained, including
some esoteric command line stuff that is notoriously hard to search for.

Typographical Conventions

As a book that must work on lots of devices and paper, the code listings have to fit
in a certain space. I’ve done my best to make sure the code is accurate and doesn’t
flow off the page.

There are some command-line invocations, and they look like so:

> ls -xF /
bin@ boot/ dev/ etc/ home/ lib@ media/ mnt/ opt/ p. . .
sbin@ srv/ sys/ tmp/ usr/ var/

Sometimes, the output is lengthy and irrelevant, so in those cases, it’s omitted,
and would look like so:

> ls /etc
«lots of output»

More frequently, a command-line invocation will be long, and not fit on the
page. Fortunately, the UNIX command-line environment allows you to stretch a
command over several lines by ending a line in a backslash. For example:

> ls -l ~/projects

Can be written as:

> ls \
-l \
~/projects

5

https://docs.docker.com/engine/install/linux-postinstall/

For code, when creating a file, the text should state clearly to create a file with a
given name in a given location. For example, I might ask you to create the file
amazing.js in the current directory:

/* amazing.js */

document.addEventListener("DOMContentLoaded", () => {
console.log("This is the only JS in this book")

})

For editing code, I’ll try to show enough context to know where to make edits,
along with arrows that indicate the changed code:

/* amazing.js */

document.addEventListener("DOMContentLoaded", () => {
→ console.log("I lied, this is also JS")
→ console.log("And sorry in advance, there is gonna be YAML")

})

Sometimes lines of output are too long for the page but also not relevant. Those
will be truncated and I assure you that there is no important information being
lost.

One last thing that I cannot seem to fix is that copy and paste out of the PDF is
often somewhat strange. I would recommend you type things out. It’s better for
learning anyway. If you don’t want to type things out, the sample code is available
from the book’s website at https://devbox.computer/sample_code.zip.

If you have any problems getting things to work, try the sample code from the
website first.

OK, let’s get into it. What exactly is a dev environment?

6

2

The Four Types of Dev
Environments

Pai Mei brought Kiddo to the standing desk. On the desk
was a brand new computer. Kiddo tried to install the
latest version of NodeJS following Pai Mei’s written
instructions. When it failed, she turned to her master. Pai
Mei only frowned.
Kiddo, unsure how to proceed, said “Master, how am I to
install software onto my computer?”
Pai Mei, enraged, smashed her knuckles with the end of
his staff. “Your computer?”
Cradling her bruised hand, Kiddo cried: “Master, is it not
mine?!”
Pai Mei, still enraged, again smashed Kiddo’s hand with
his staff. After a single stroke of his long, white beard, he
simply grumbled and glared at Kiddo.
Kiddo’s eyes dropped as she looked back at the computer.
Her gnarled fingers could barely enter the search terms
into the operating system vendor’s support site. In that
moment, she was enlightened.

—Kill Bill, Vol 3

While there are actually an infinite number of dev environments, any given setup
can be categorized along two axes, to give us four broad categories. This chapter
explains why one of these is superior to the others.

First, a dev environment is categorized based on the instructions for setting it up:
documentation on one side and automation on the other. I’d bet most environ-
ments you’ve used were heavy on documentation and light on automation.

The second axis relates to how the environment is run. Is it native—running
everything directly on the developer’s workstation—or virtual—running in the
cloud or a virtual environment?

What we’re building in this book is the best of the four options: automated and
virtualized. Let’s talk through why automation is better than documentation and
virtualization is better than native.

7

2.1 The Best Documentation is an Executable Script

Documentation is cheap to produce, especially if it isn’t maintained or well-
written. It’s often better than nothing, so most teams start their journey to a
sustainable dev environment with a Markdown file or a wiki that outlines what
you need to do to get set up. This does not scale. At all.

It’s extremely hard to write good documentation. It’s harder when what you are
documenting is complex, which happens when your software installation system
has to accommodate several package managers, operating systems, hardware
architectures, and Pat, who insists on building everything from source.

Of course, even if you could achieve this, how is this documentation maintained?
For dev environments, the new hires are usually charged with updating it when
they find it doesn’t work. Over time, the steps become so convoluted that not even
the most conscientious person can follow them.

Automation solves this. Automation shows exactly what has to happen because it
makes it happen. Automation either works or doesn’t. Even though automation
feels expensive to produce, it saves time the more it’s used.

Automation has two further advantages. First, developers already possess the
skills to produce it, whereas they may or may not be good at writing. Second,
automation can be tested. A script that sets up a working dev environment can be
used to setup an environment for continuous integration, thus ensuring that the
team is aware of issues quickly, and can fix them just as quickly.

2.2 Our Computers are Increasingly Not Under Our Control

If you happen to be a Ruby developer who uses a Mac, you’ve no-doubt experi-
enced the yearly problem when macOS releases an update and you can no longer
install Ruby. Macs have long-since stopped shipping with a reasonable version
of Ruby, and you certainly can’t install gems (Ruby’s form of third-party libraries)
without breaking something.

This is not something unique to Apple. Every OS vendor, in their quest for stability,
will take great strides to prevent changes to what is considered the “system soft-
ware”. If some script depends on a particular version of Perl, and you change that
version, you could break the operating system.

Of course, it’s not just the operating system vendor. Many companies have IT and
security teams tasked with preventing security incidents. A critical tool in doing
so is to force operating system and software updates to the employees. These
teams aren’t always capable or incentivized to work with developers to ensure
such updates won’t impact their ability to work. Even if they did, at the end of the
day, security updates are going to be more important.

The reality is that we don’t really own all the software on our computers, and that
we can’t easily understand how the various libraries and tools that come with it
are affected by the libraries and tools we need to do our work.

Virtualization solves this. As long as your computer can run the virtualization
software, you can run a virtual machine configured exactly how you like, and it

8

won’t change out from under you. And your entire team can use that exact same
version, even though said team might be using a myriad of different computers
and operating systems.

Virtualization does come with potentially worse performance than running na-
tively, but this is a worthwhile trade-off (and the performance gap is always shrink-
ing). I would be willing to bet that the time spent waiting for slightly slower tests
is far outweighed by the time saved not wrestling with some arcane compiler flags
every time something changes in your OS.

2.3 Automation and Virtualization Lead to Sustainability

An automated dev environment, based on virtualized operating systems, provides
a solid foundation for building just about any app. The automation is never out of
date, and the operating system can be kept stable.

Eschewing virtualization requires automating the set up of a developer laptop.
While this is better than a documentation-based approach, it’s still highly complex.
The automation must account for all operating systems and hardware.

When automating developer workstation setup, the team must either maintain
that system themselves or rely on a third party. Whatever preconceived notions
you may have about Docker, I can assure you that it’s simpler to have Docker
install software than to write a script that must work across many different OSes
and hardware profiles.

As for third party solutions, they have to get installed themselves and the team
must understand how they work to debug or enhance them. This turns out to be
more difficult than learning a commonly-used tool like Docker. We’ll talk about
this in “Tech Companies Should Not Own Your Dev Environment” on page ??.

On the other side, using a virtualized environment with documented instructions
can be helpful, but you still fall victim to the trappings of documentation. Your
docs might be simpler, since they can address the virtualized environment only,
but they will still fall out of date.

We’re going to use Docker for virtualization, and a combination of Docker and
Bash for automation. The reasons have to do with a hidden, third axis: how easy is
it to understand the abstractions on which your dev environment is built?

2.4 You Must Always Understand One Level Below the Current
Abstraction

The best abstractions are borne from repeated applications of a technology for
a well-defined use-case. Writing assembly language gets tiresome, so C was in-
vented. Even though assembly can do far more than C, for most common use-
cases, C is much faster and easier to use. It’s a great abstraction.

If you learn C and not assembly, you will eventually hit a limit. You won’t know
exactly what problem C was created to solve and, eventually, there will be a
problem that your knowledge of C alone cannot solve. You will need to learn
a bit of assembly.

9

Your dev environment is the same way. Whatever mechanism you use to manage
it, it is ultimately an abstraction on top of other technologies that are being orches-
trated to manage your environment. When something goes wrong—either due
to a bug or an unforeseen use case—you’ll need to pop the hood and see what’s
under there.

Thus, you need to understand—or be able to get an understanding of—whatever
your dev environment is built on, as shown in “Understanding Abstractions” be-
low.

Figure 2.1: Understanding Abstractions

What this means is that your dev environment should use technologies that you
either do, or can, understand. Applying this to your team, this also implies that
there is more value in using commonly-understood, battle-tested technologies
than in using something that might tick off more features but is more esoteric or
less likely to continue to exist past its next round of funding.

Docker—despite being VC-funded itself—is prolific. A lot of people understand it,
and it’s not going anywhere. There are even competing products that can build
Docker images and run Docker containers.

And Bash. . . well. . . Bash will outlive us all. The only better investment in your
career than learning Bash is learning SQL and if there were a way to automate all
this with SQL, I’d definitely be considering it.

10

To that end, we’ll now start our journey to learn this stuff. It’s not going to take too
long. We’ll start with Docker, which, despite some warts and a few design flaws, is
the best tool for the job of virtualizing our dev environment.

11

A

The Docker Lexicon for
Regular People

“Forget about it” is like if you agree with someone, you
know, like Perl was great before version 5, forget about it.
But then, if you disagree, like functional programming is
better than imperative? Forget about it! You know? But
then, it’s also like if something’s the greatest thing in the
world, like Ruby on Rails 3.0, forget about it. But it’s also
like saying go to hell, too. Like, you know, like “Hey Patty,
your cohort in that A/B test tanked our conversion rate”
and Patty says “Forget about it!”. Sometimes, it just
means forget about it.

—Donald “Joe” Brasco “Pistone”, former Fog Creek Staff
Engineer

Table A.1: Docker Nouns

Docker English

Container Virtual Computer
Container Registry Hosted Images
Dockerfile Image Build Script
Host Your Computer
Image Disk Image for a Virtual Computer
Port Network Port on a Virtual Computer
Repository Remote location for different versions of the same image
Volume Disk

Table A.2: Docker Verbs

Docker English

build (an image) Create an image from a Dockerfile
create (a container) Order a computer from Amazon and put a hard drive in it

when it shows up
expose (a port) Allow another container to access a port in this container
mount (a volume) Make a disk available

13

Docker English

pull (an image) Fetch an image from a remote registry and store it for later
use

publish (a port) Map a container’s port to your computer’s port on
localhost

push (an image) Send an image to a remote registry
start (a container) Turn on a computer
stop (a container) Shut down a computer

14

B

Bash and Command-Line
Quick Reference

Ready are you? What know you of ready? Through eight
rounds of investment have I trained UNIX hackers. My
own counsel I will keep on who is to be trained. A UNIX
hacker must have the deepest commitment, the most
serious mind. React? Hmph. Mobile Apps? Heh. A UNIX
hacker craves not these things.

—OH at the bar of Pied Piper, Palace Hotel, San Francisco

B.1 Concepts

Environment, or “UNIX Environment” A set of keys and values that a process
can access when it executes. The UNIX Environment is a common way to
pass complex information from one process to the next. Each key/value pair
is called an Environment Variable. Both the key and the value are treated as
strings.

Exit Code or Exit Status a value, usually from 0 to 127, that represents the out-
come of a command. 0 means the command succeeded. Any other value
means it failed. Some commands document their exit codes so you can
inspect the value to find out more details about why it failed. Used by Bash
when running commands in a pipeline, using &&, or ||.

File Descriptor An integer that UNIX interprets as an input or output stream.

Input Stream An abstraction that allows reading input. It is typically read in a
loop until the stream is closed, which allows any amount of data to be read,
since it doesn’t have to fit into memory at the same time.

Output Stream An abstraction that allows sending output somewhere. It is typ-
ically used until whoever is writing to it closes it. This allows a potentially
unlimited amount of data to be written.

Path A set of directories that will be searched for when you attempt to run a
command. The path is a string where each directory is delimited by a colon.
The directories are searched in order. You can inspect the path by examining
the environment variable PATH, e.g. echo $PATH.

15

Process Something running on the computer, like your app, ls, bash, or a web
server. A process is the lowest-level abstraction that you will deal with when
using Bash or the command-line.

Shell An interpreter to interact with the operating system, typically initiated by a
user logging into the system and executing commands.

Standard Error An output stream where command-line apps are expected to
write error messages. This is file descriptor #2

Standard Input An input stream a command-line app can use to read input from
the user or another command. This descriptor is #0.

Standard Output An output stream where command-line apps are expected to
send whatever output they exist to output. Should not have error messages.
This is file descriptor #1.

B.2 Symbol Soup

/dev/null A special file that discards everything sent to it. Used to hide output
from scripts.

> e.g. ls > file.txt Redirect the standard output of a command into a file,
overwriting that file.

>> e.g. ls >> file.txt Append the standard output of a command to the end of a
file, creating it if needed.

2> e.g. grep gem Gemfile 2> /dev/null Redirect the standard error of a command
into a file.

2>&1 e.g. grep gem Gemfile > /dev/null 2>&1 Combine the standard error of a
command into its standard output and send them to wherever the > sent
them (to /dev/null in this example)

| e.g. echo ls | bash Send the standard output of a command into the standard
input of another command, thus creating a pipeline. Note that to cause
the entire pipeline to fail if any command fails, you must set -o pipefail
before running the pipelined commands.

|| e.g. as in bin/setup || echo 'failed' If the command on the left of the ||
fails, run the command on the right. Otherwise, don’t do that.

&& e.g. bin/setup && echo 'OK' If the command on the left of the && fails, don’t
run the command on the right. Otherwise, run that command.

; e.g. bin/setup ; echo 'No idea' Separates commands, running each in order,
regardless of the exit code of any command.

& e.g. bin/run & Runs a command in the background. When you do this, the shell
will print a number inside brackets like so: [3]. You can then kill the process
by running kill %«number» (e.g. kill %3 in this example), or you can bring
it back to the foreground via fg %«number» (e.g. fg %3 in this example).

16

#! e.g. #!/bin/bash at the start of script. On the first line of a script, tells the
operating system what program to use to interpret the remainder of the
script.

\ As seen in many code examples here, this allows you to split long lines onto
multiple lines in the terminal.

${VAR_NAME} Access the value of a variable named VAR_NAME which could be in the
UNIX environment or set as part of the script, or set on the command line.

${0} The name of the script currently being executed.

${1}, ${2}, . . . The arguments given to the script or function, with ${1} being the
first argument, ${2} being the second and so on.

'${VARNAME}' or '$VARNAME' When used in a Bash script, the use of single quotes
prevents VARNAME from being expanded into its value. The literal value inside
the single quotes is used.

"${VARNAME}" or "$VARNAME" When used in a Bash script, the use of double quotes
ensures that when VARNAME’s value is expanded, it is quoted and thus will not
be misinterpreted as multiple arguments.

"${@}" A special form that expands to the Bash command’s arguments list, with
each argument properly quoted so that any command to which this is passed
will interpret it the same way the Bash command did.

17

	Contents
	Your Dev Environment Sucks
	The Four Types of Dev Environments
	The Best Documentation is an Executable Script
	Our Computers are Increasingly Not Under Our Control
	Automation and Virtualization Lead to Sustainability
	You Must Always Understand One Level Below the Current Abstraction

	The Docker Lexicon for Regular People
	Bash and Command-Line Quick Reference
	Concepts
	Symbol Soup

